Customer login:
   
     
 REMOTE DESKTOP
 SUPPORT SERVICE
New PC OS Setup
New Antivirus setup
MS Office installation
Peripheral Setup
Antivirus Removal
PC Optimization
Router Configuration
Data transfer
PC Trobleshooting
Tablet setup

Green IT
1. What is the concept of Green IT ?
2. Where and how we can make IT more Green?
The concept of Green IT
Green computing or green IT, refers to environmentally sustainable computing or IT. In the article Harnessing Green IT: Principles and Practices- defines the field of green computing as "the study and practice of designing, manufacturing, using, and disposing of computers, servers, and associated subsystems-such as monitors, printers, storage devices, and networking and communications systems-efficiently and effectively with minimal or no impact on the environment."The goals of green computing are similar to green chemistry; reduce the use of hazardous materials, maximize energy efficiency during the product's lifetime, and promote the recyclability or biodegradability of defunct products and factory waste. Research continues into key areas such as making the use of computers as energy-efficient as possible, and designing algorithms and systems for efficiency-related computer technologies.

Approaches to green computing
In the article Harnessing Green IT: Principles and Practices- defines the field of green computing as "the study and practice of designing, manufacturing, using, and disposing of computers, servers, and associated subsystems-such as monitors, printers, storage devices, and networking and communications systems-efficiently and effectively with minimal or no impact on the environment." lays out four paths along which he believes the environmental effects of computing should be addressed: Green use, green disposal, green design, and green manufacturing. Modern IT systems rely upon a complicated mix of people, networks and hardware; as such, a green computing initiative must cover all of these areas as well. A solution may also need to address end user satisfaction, management restructuring, regulatory compliance, and return on investment (ROI). There are also considerable fiscal motivations for companies to take control of their own power consumption; "of the power management tools available, one of the most powerful may still be simple, plain, common sense."

Where and how we can make IT more Green?

1. Product longevity
Gartner maintains that the PC manufacturing process accounts for 70 % of the natural resources used in the life cycle of a PC. Therefore, the biggest contribution to green computing usually is to prolong the equipment's lifetime. Another report from Gartner recommends to "Look for product longevity, including upgradability and modularity." For instance, manufacturing a new PC makes a far bigger ecological footprint than manufacturing a new RAM module to upgrade an existing one, a common upgrade that saves the user having to purchase a new computer.

2. Algorithmic efficiency
The efficiency of algorithms has an impact on the amount of computer resources required for any given computing function an there are many efficiency trade-offs in writing programs. As computers have become more numerous and the cost of hardware has declined relative to the cost of energy, the energy efficiency and environmental impact of computing systems and programs has received increased attention. A study by Alex wissner - gross, a physicist at Harvard, estimated that the average Google search released 7 grams of carbon dioxide (co2). However, Google disputes this figure, arguing instead that a typical search produces only 0.2 grams of CO2.

3. Resource allocation
Algorithms can also be used to route data to data centers where electricity is less expensive. Researchers from MIT, Carnegie Mellon University, and Akamai have tested an energy allocation algorithm that successfully routes traffic to the location with the cheapest energy costs. The researchers project up to a 40 percent savings on energy costs if their proposed algorithm were to be deployed. Strictly speaking, this approach does not actually reduce the amount of energy being used; it only reduces the cost to the company using it. However, a similar strategy could be used to direct traffic to rely on energy that is produced in a more environmentally friendly or efficient way. A similar approach has also been used to cut energy usage by routing traffic away from data centers experiencing warm weather; this allows computers to be shut down to avoid using air conditioning.

4. Virtualization
Computer virtualization refers to the abstraction of computer resources, such as the process of running two or more logical computer systems on one set of physical hardware. The concept originated with the IBM mainframe operating systems of the 1960s, but was commercialized for x86-compatible computers only in the 1990s. With virtualization, a system administrator could combine several physical systems into virtual machines on one single, powerful system, thereby unplugging the original hardware and reducing power and cooling consumption. Several commercial companies and open-source projects now offer software packages to enable a transition to virtual computing. Intel Corporation and AMD have also built proprietary virtualization enhancements to the x86 instruction set into each of their CPU product lines, in order to facilitate virtualized computing.

5. Terminal servers
Terminal servers have also been used in green computing. When using the system, users at a terminal connect to a central server; all of the actual computing is done on the server, but the end user experiences the operating system on the terminal. These can be combined with thin clients, which use up to 1/8 the amount of energy of a normal workstation, resulting in a decrease of energy costs and consumption. There has been an increase in using terminal services with thin clients to create virtual labs. Examples of terminal server software include Terminal Services for Windows and the Linux Terminal Server Project (LTSP) for the Linux operating system.

6. Power management
The Advanced Configuration and Power Interface (ACPI), an open industry standard, allows an operating system to directly control the power-saving aspects of its underlying hardware. This allows a system to automatically turn off components such as monitors and hard drives after set periods of inactivity. In addition, a system may hibernate, where most components (including the CPU and the system RAM) are turned off. ACPI is a successor to an earlier Intel-Microsoft standard called Advanced Power Management, which allows a computer's BIOSto control power management functions. Some programs allow the user to manually adjust the voltages supplied to the CPU, which reduces both the amount of heat produced and electricity consumed. This process is calledundervolting. Some CPUs can automatically undervolt the processor depending on the workload; this technology is called "SpeedStep" on Intel processors, "PowerNow!"/"Cool'n'Quiet" on AMD chips, LongHaul on VIA CPUs, and LongRun with Transmeta processors.

7. Operating system support
The dominant desktop operating system, Microsoft Windows, has included limited PC power management features since Windows 95. These initially provided for stand-by (suspend-to-RAM) and a monitor low power state. Further iterations of Windows added hibernate (suspend-to-disk) and support for the ACPI standard. Windows 2000 was the first NT based operation system to include power management. This required major changes to the underlying operating system architecture and a new hardware driver model. Windows 2000 also introduced Group Policy, a technology which allowed administrators to centrally configure most Windows features. However, power management was not one of those features. This is probably because the power management settings design relied upon a connected set of per-user and per-machine binary registry values, effectively leaving it up to each user to configure their own power management settings. This approach, which is not compatible with Windows Group Policy, was repeated in Windows XP. The reasons for this design decision by Microsoft are not known, and it has resulted in heavy criticism Microsoft significantly improved this in Windows Vista by redesigning the power management system to allow basic configuration by Group Policy.

The support offered is limited to a single per-computer policy. The most recent release, Windows 7 retains these limitations but does include refinements for more efficient user of operating system timers, processor power management, and display panel brightness. The most significant change in Windows 7 is in the user experience. The prominence of the default High Performance power plan has been reduced with the aim of encouraging users to save power. There is a significant market in third-party PC power management software offering features beyond those present in the Windows operating system. Most products offer Active Directory integration and per-user/per-machine settings with the more advanced offering multiple power plans, scheduled power plans, anti-insomnia features and enterprise power usage reporting.


8. Power supply
Desktop computer power supplies (PSUs) are generally 70-75% efficient, dissipating the remaining energy as heat. An industry initiative called 80 PLUS certifies PSUs that are at least 80% efficient; typically these models are drop-in replacements for older, less efficient PSUs of the same form factor. As of July 20, 2007, all new Energy Star 4.0-certified desktop PSUs must be at least 80% efficient.

9. Storage
Smaller form factor (e.g. 2.5 inch) hard disk drives often consume less power per gigabyte than physically larger drives. Unlike hard disk drives, solid-state drives store data in flash memory or DRAM. With no moving parts, power consumption may be reduced somewhat for low capacity flash based devices. As hard drive prices have fallen, storage farms have tended to increase in capacity to make more data available online. This includes archival and backup data that would formerly have been saved on tape or other offline storage. The increase in online storage has increased power consumption. Reducing the power consumed by large storage arrays, while still providing the benefits of online storage, is a subject of ongoing research.

10. Graphics or video card

A fast GPU may be the largest power consumer in a computer. Energy efficient display options include:No video card - use a shared terminal, shared thin client, or desktop sharing software if display required.Use motherboard video output - typically low 3D performance and low power.Select a GPU based on average wattage or performance per watt

11. Display
LCD monitors typically use a cold-cathode fluorescent bulb to provide light for the display. Some newer displays use an array of light-emitting diodes (LEDs) in place of the fluorescent bulb, which reduces the amount of electricity used by the display..

12. Material Recycling
Recycling computing equipment can keep harmful materials such as lead, mercury, and hexavalent chromium out of landfills, and can also replace equipment that otherwise would need to be manufactured, saving further energy and emissions. Computer systems that have outlived their particular function can be re-purposed, or donated to various charities and non-profit organizations. However, many charities have recently imposed minimum system requirements for donated equipment. Additionally, parts from outdated systems may be salvaged and recycled through certain retail outlets and municipal or private recycling centers. Computing supplies, such as printer cartridges, paper, and batteries may be recycled as well. A drawback to many of these schemes is that computers gathered through recycling drives are often shipped to developing countries where environmental standards are less strict than in North America and Europe.

The Silicon Valley Toxics Coalition estimates that 80% of the postconsumer e-waste collected for recycling is shipped abroad to countries such as China and Pakistan. The recycling of old computers raises an important privacy issue. The old storage devices still hold private information, such as emails, passwords and credit card numbers, which can be recovered simply by someone using software that is available freely on the Internet. Deletion of a file does not actually remove the file from the hard drive. Before recycling a computer, users should remove the hard drive or hard drives if there is more than one, and physically destroy it or store it somewhere safe. There are some authorized hardware recycling companies to whom the computer may be given for recycling, and they typically sign a non-disclosure agreement.


13. Telecommuting
Teleconferencing and tele presence technologies are often implemented in green computing initiatives. The advantages are many; increased worker satisfaction, reduction of greenhouse gas emissions related to travel, and increased profit margins as a result of lower overhead costs for office space, heat, lighting, etc. The savings are significant; the average annual energy consumption for U.S. office buildings is over 23 kilowatt hours per square foot, with heat, air conditioning and lighting accounting for 70% of all energy consumed. Other related initiatives, such as hoteling, reduce the square footage per employee as workers reserve space only when they need it. Many types of jobs, such as sales, consulting, and field service, integrate well with this technique. Voice over IP (VoIP) reduces the telephony wiring infrastructure by sharing the existing Ethernet copper. VoIP and phone extension mobility also made hot desking more practical.
Next Step
To discuss how Compumate Support Services
could benifit your business, please contact us

And if you'd like to know more about how we support our
clients, just call or mail us;

Call : +971 4 4344200
Mail us : sales@compumate.ae